Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
NPJ Vaccines ; 8(1): 57, 2023 Apr 20.
Article in English | MEDLINE | ID: covidwho-2302870

ABSTRACT

This study reports the 6-month humoral immune response in vaccinated patients concomitantly infected with Delta and Omicron BA.1 variants of SARS-CoV-2. Interestingly, the simultaneous exposure to the Delta and BA.1 S proteins does not confer an additional immune advantage compared to exposure to the BA.1 S protein alone.

2.
Emerg Microbes Infect ; 11(1): 2423-2432, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2028961

ABSTRACT

Omicron variant is circulating in the presence of a globally acquired immunity unlike the ancestral SARS-CoV-2 isolate. Herein, we investigated the normalized viral load dynamics and viral culture status in 44 fully vaccinated healthcare workers (HCWs) infected with the Omicron BA.1 variant. Viral load dynamics of 38 unvaccinated HCWs infected with the 20A variant during the first pandemic wave was also studied. We then explored the impact of Omicron infection on pre-existing immunity assessing anti-RBD IgG levels, neutralizing antibody titres against 19A, Delta and Omicron isolates, as well as IFN-γ release following cell stimulation with SARS-CoV-2 peptides. We reported that two weeks after diagnosis a greater proportion of HCWs infected with 20A (78.9%, 15/19) than with Omicron BA.1 (44.7%, 17/38; p = 0.02) were still positive by RT-qPCR. We found that Omicron breakthrough infections led to an overall enhancement of vaccine-induced humoral and cellular immunity as soon as a median [interquartile range] of 8 [7-9] days post symptom onset. Among samples with similar high viral loads, non-culturable samples exhibited higher neutralizing antibody titres and anti-RBD IgG levels than culturable samples. Additionally, Omicron infection led to an enhancement of antibodies neutralization capacity against other SARS-CoV-2 isolates. Taken together, the results suggest that Omicron BA.1 vaccine breakthrough infection is associated with a faster viral clearance than that of the ancestral SARS-CoV-2, in addition this new variant leads to a rapid enhancement of the humoral response against multiple SARS-CoV-2 variants, and of the cellular response.


Subject(s)
COVID-19 , Viral Vaccines , Humans , SARS-CoV-2/genetics , Virus Shedding , Antibodies, Viral , Immunoglobulin G , Antibodies, Neutralizing
3.
Arch Med Res ; 52(8): 850-857, 2021 11.
Article in English | MEDLINE | ID: covidwho-1631298

ABSTRACT

BACKGROUND: As COVID-19 pandemic and vaccination effects progress, research now focuses on adaptive immunological response to SARS-CoV-2. Few studies specifically investigated intensive care unit (ICU) patients, and little is known about kinetics of humoral response in such critically ill patients. In this context, the main objective of the present work was to perform a longitudinal analysis of the humoral response in critically ill COVID-19 patients with prolonged ICU stays in regard with initial inflammatory response, disease severity and mortality. METHODS: Over a 3 week period, circulating immunoglobulins (Ig) against SARS-CoV-2 along with several immunological and clinical parameters were measured in 64 ICU COVID-19 patients. RESULTS: Critically ill COVID-19 patients mounted a dynamic and sustained antibody response of both IgM and IgG as soon as the first day of ICU hospitalization. This serological response was not associated with any of the classical immunological parameters measured at ICU admission or with initial severity clinical scores. IgM and IgG levels and seroconversion trajectories were not associated with unfavourable outcome. CONCLUSION: Despite rapid seroconversion and elevated humoral response, COVID-19 patients are still characterized by elevated mortality. Additional studies, including cytotoxic T cell functions, are mandatory to understand the immunological mechanisms contributing to long stay of COVID-19 patients in ICU.


Subject(s)
COVID-19 , Critical Illness , Humans , Intensive Care Units , Pandemics , SARS-CoV-2 , Seroconversion
5.
Eur J Immunol ; 51(12): 3239-3242, 2021 12.
Article in English | MEDLINE | ID: covidwho-1413180

ABSTRACT

Antigen-specific T-cells are essential for protective immunity against SARS-CoV-2. We set up a semi-automated whole-blood Interferon-gamma release assay (WB IGRA) to monitor the T-cell response after stimulation with SARS-CoV-2 peptide pools. We report that the WB IGRA is complementary to serological assays to assess SARS-CoV-2 immunity.


Subject(s)
COVID-19/immunology , Interferon-gamma/metabolism , Memory T Cells/immunology , SARS-CoV-2/physiology , Adult , Automation, Laboratory , Cells, Cultured , Cohort Studies , Female , Humans , Interferon-gamma Release Tests/standards , Lymphocyte Activation , Male , Middle Aged , T-Cell Antigen Receptor Specificity , Whole Body Imaging , Young Adult
6.
Sci Rep ; 11(1): 14977, 2021 07 22.
Article in English | MEDLINE | ID: covidwho-1322500

ABSTRACT

A comprehensive clinical and microbiological assessments of COVID-19 in front-line healthcare workers (HCWs) is needed. Between April 10th and May 28th, 2020, 319 HCWs with acute illness were reviewed. In addition to SARS-CoV-2 RT-PCR screening, a multiplex molecular panel was used for testing other respiratory pathogens. For SARS-CoV-2 positive HCWs, the normalized viral load, viral culture, and virus neutralization assays were performed weekly. For SARS-CoV-2 negative HCWs, SARS-CoV-2 serological testing was performed one month after inclusion. Among the 319 HCWs included, 67 (21.0%) were tested positive for SARS-CoV-2; 65/67 (97.0%) developed mild form of COVID-19. Other respiratory pathogens were found in 6/66 (9.1%) SARS-CoV-2 positive and 47/241 (19.5%) SARS-Cov-2 negative HCWs (p = 0.07). The proportion of HCWs with a viral load > 5.0 log10 cp/mL (Ct value < 25) was less than 15% at 8 days after symptom onset; 12% of HCWs were positive after 40 days (Ct > 37). More than 90% of cultivable virus had a viral load > 4.5 log10 cp/mL (Ct < 26) and were collected within 10 days after symptom onset. Among negative HCWs, 6/190 (3.2%) seroconverted. Our data suggest that the determination of viral load can be used for appreciating the infectiousness of infected HCWs. These data could be helpful for facilitating their return to work.


Subject(s)
COVID-19/diagnosis , Health Personnel , SARS-CoV-2/isolation & purification , Adult , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , COVID-19 Serological Testing , Female , Humans , Male , Middle Aged , Prospective Studies , Viral Load , Young Adult
7.
J Clin Med ; 9(6)2020 Jun 16.
Article in English | MEDLINE | ID: covidwho-599307

ABSTRACT

A reliable diagnostic assay is crucial to early detect new COVID-19 cases and limit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Since the onset of the COVID-19 pandemic, the World Health Organization has published several diagnostic molecular approaches developed by referral laboratories, including Charité (Germany), HKU (Hong Kong), China CDC (China), US CDC (United States), and Institut Pasteur, Paris (France). We aimed to compare the sensitivity and specificity of these different RT-PCR assays using SARS-CoV-2 cell culture supernatants and clinical respiratory samples. Overall, the different RT-PCR assays performed well for SARS-CoV-2 detection and were all specific except the N Charité (Germany), and N2 US CDC (United States) assays. RdRp Institut Pasteur (IP2, IP4), N China CDC, and N1 US CDC were found to be the most sensitive assays. The data presented herein are of prime importance to facilitate the equipment choice of diagnostic laboratories, as well as for the development of marketed tests.

SELECTION OF CITATIONS
SEARCH DETAIL